IFE

DNVA Seminar The Norwegian Academy of Science and Letters

The Future of Gas

Oslo 13 February 2024

Hydrogen and Ammonia for Maritime Applications

Øystein Ulleberg Chief Scientist IFE | Director MoZEES Associate Professor UiO

Synopsis

Energy Storage

- Short Range Compressed Hydrogen (CH2)
- Medium Range Liquid Hydrogen (LH2) & Ammonia (NH3)
- Long Range Ammonia (NH3)

Power Systems

- Low-Temperature PEM Fuel Cells (H2)
- High-Temperature Solid Oxide Fuel Cells (H2,NH3)
- Internal Combustion Engines H2/NH3

IFE

Maritime Hydrogen Projects in Norway (2023)

• National Support for Maritime Projects – Hydrogen & Ammonia

Ocean Infinity (**H2**) – 148,6 MNOK

Færder Tankers (NH3) – 93 MNOK

Færder Tankers (NH3) – 112,6 MNOK

POMERA BY MATURE POMERA BY MATURE Desil Ulvan Rederi AS Egil Ulvan (H2) – 104 MNOK

Loran (**H2**) – 92,5 MNOK

IFE

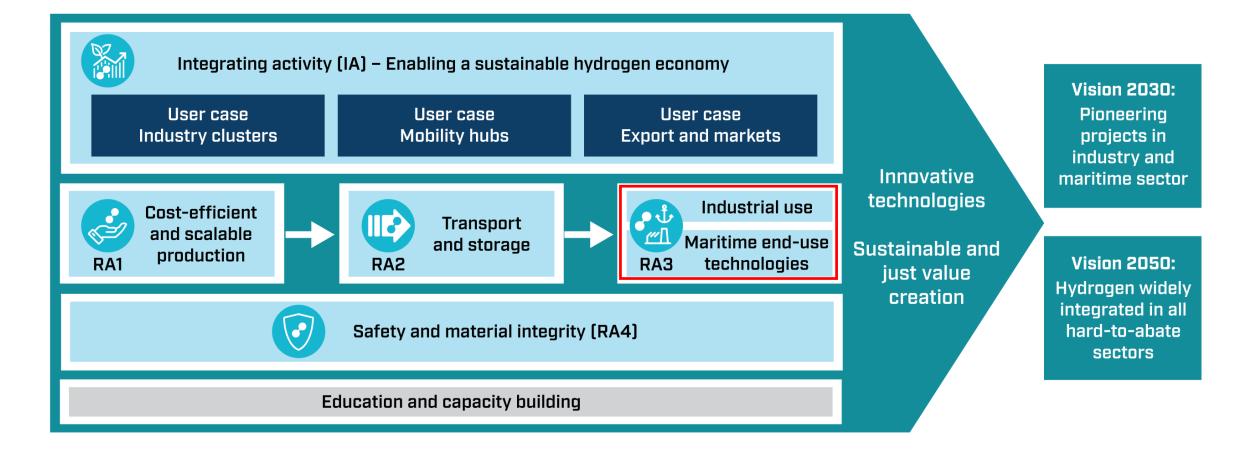
Hydrogen Infrastructure for Maritime Projects (2023)

• National Support for the establishment of five Hydrogen Hubs along the coast of Norway

Trønderenergi Hydrogen AS (113 MNOK) - Hitra

Glomfjord Hydrogen AS (150 MNOK) – Glomfjord

NTE Energy AS (125 MNOK) – **Rørvik**



Greenstat ASA (148 MNOK) - Kristiansand

HyFuel AS (132 MNOK) – Florø

Hydrogen & Ammonia End-Use Technologies

Maritime H2 and NH3 Technologies

R&D Partners: IFE, SINTEF, NTNU, UIT-Narvik, SINTEF

Hydrogen based Power & Propulsion Systems (WP3.2)

- 1. Fuel cell stacks and system
- 2. H2/NH3-fired combustion engines
- 3. System integration

• PhD Studies (2023 – 2026)

- 1. UiT-Narvik *"Electrical System Integration and Controls of Large Maritime PEM Fuel Cell Systems"* Main supervisor: Prof. Bjarte Hoff. PhD-student from Q1 2024:
- 2. NTNU IMT *"Combustion of Ammonia and Hydrogen Fuel Mixtures in Marine Engines"* Main supervisor: Prof. David Emberson. PhD-student from Q3 2023: Duc Duy "Joey" Nguyen
- 3. NTNU IMT *"Hydrogen-Electric Propulsion for Zero-Emission Shipping"* Main supervisor: Prof. Mehdi Zadeh. PhD-student from Q1 2024: Spiros Brouzas

ଅଟି **HYDROGEN**

Fuel Cell Stacks and Systems Maritime Fuel Cell Stacks & Systems

Goals:

- Maritime FC systems for zero-emission power
- PEMFC system validation and demonstration

Research Challenges & Methodology

- Optimize lifetime of H2-based low-temperature PEM fuel cells (high TRL)
- Accelerated Stress Tests (AST) of PEMFC stacks
- Electrochemical analysis (EIS, IV, CV)
- PEMFC system design & electrical system integration
- Develop next generation NH₃-based high-temperature SOFCs (low TRL)

ଅଟି **HYDROGEN**i

PEM Fuel Cell

Piotr Bujlo Senior Scientist IFE piotr.bujlo@ife.no

NH3/H2-fired Combustion Engines

Optimization of IC-engines for carbon-free fuels (NTNU, SINTEF Energy)

Goals:

- Identify crucial technology shortcomings
- Propose mitigation measures

Research Challenges & Methodology

- **Reliable ignition** (spark/pre-chamber) of NH₃-rich fuels
- Emissions of GHG (N₂O) and pollutants (NO_x) from NH₃- & H₂-flames
- Early ignition of H₂-fired engines (spontaneous-propagation regime)
- Advanced numerical studies (SINTEF) and laboratory experiments (NTNU)

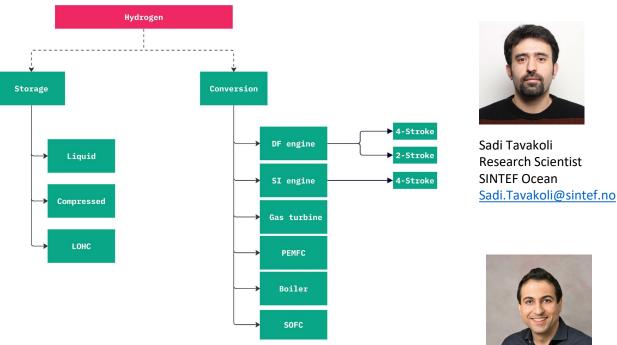
H2/NH3 IC-Engines

David Emberson Associate Professor NTNU IMT David.emberson@sintef.no

Andrea Gruber Senior Research Scientist SINTEF Energy Research andrea.gruber@sintef.no

System Integration & Hybridization Safe, Efficient and Reliable Integration of Technologies

Goals:


F

- Identify effective pathways use of H₂ and NH₃
- Design for realistic operational scenarios

Research Challenges & Methodology

- Establish efficient pathways for maritime end use of H₂ & NH₃
- Develop generic methodology for analyzing impact of the technology
- Develop the model for the cost of ownership for maritime application of H₂ and NH₃

Provide the second seco

H2 Key Technologies

Associate Professor NTNU IMT Mehdi.zadeh@ntnu.no

Latest H2 & NH₃ Maritime Technology Developments

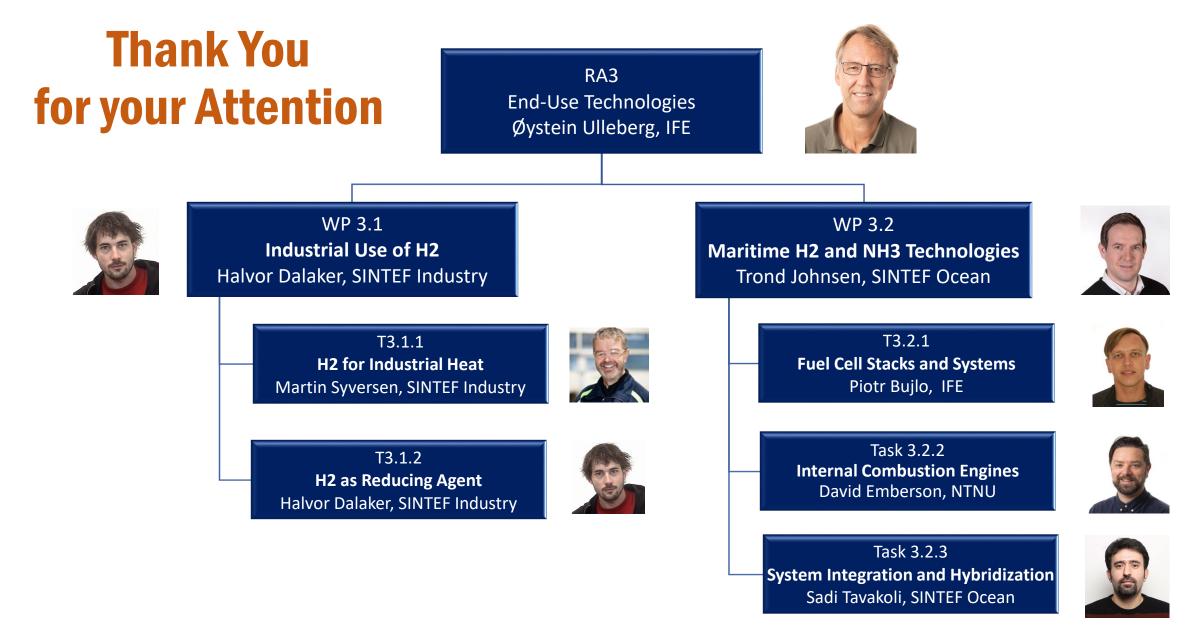


ABB to power Samskip's new hydrogen-fueled container vessels

Progeni

